ILNCSIM: improved lncRNA functional similarity calculation model

نویسندگان

  • Yu-An Huang
  • Xing Chen
  • Zhu-Hong You
  • De-Shuang Huang
  • Keith C.C. Chan
چکیده

Increasing observations have indicated that lncRNAs play a significant role in various critical biological processes and the development and progression of various human diseases. Constructing lncRNA functional similarity networks could benefit the development of computational models for inferring lncRNA functions and identifying lncRNA-disease associations. However, little effort has been devoted to quantifying lncRNA functional similarity. In this study, we developed an Improved LNCRNA functional SIMilarity calculation model (ILNCSIM) based on the assumption that lncRNAs with similar biological functions tend to be involved in similar diseases. The main improvement comes from the combination of the concept of information content and the hierarchical structure of disease directed acyclic graphs for disease similarity calculation. ILNCSIM was combined with the previously proposed model of Laplacian Regularized Least Squares for lncRNA-Disease Association to further evaluate its performance. As a result, new model obtained reliable performance in the leave-one-out cross validation (AUCs of 0.9316 and 0.9074 based on MNDR and Lnc2cancer databases, respectively), and 5-fold cross validation (AUCs of 0.9221 and 0.9033 for MNDR and Lnc2cancer databases), which significantly improved the prediction performance of previous models. It is anticipated that ILNCSIM could serve as an effective lncRNA function prediction model for future biomedical researches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity

Increasing evidence has indicated that plenty of lncRNAs play important roles in many critical biological processes. Developing powerful computational models to construct lncRNA functional similarity network based on heterogeneous biological datasets is one of the most important and popular topics in the fields of both lncRNAs and complex diseases. Functional similarity network construction cou...

متن کامل

Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA

Accumulating experimental studies have indicated that lncRNAs play important roles in various critical biological process and their alterations and dysregulations have been associated with many important complex diseases. Developing effective computational models to predict potential disease-lncRNA association could benefit not only the understanding of disease mechanism at lncRNA level, but al...

متن کامل

FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model

Accumulating experimental studies have indicated the influence of lncRNAs on various critical biological processes as well as disease development and progression. Calculating lncRNA functional similarity is of high value in inferring lncRNA functions and identifying potential lncRNA-disease associations. However, little effort has been attempt to measure the functional similarity among lncRNAs ...

متن کامل

IRWRLDA: improved random walk with restart for lncRNA-disease association prediction

In recent years, accumulating evidences have shown that the dysregulations of lncRNAs are associated with a wide range of human diseases. It is necessary and feasible to analyze known lncRNA-disease associations, predict potential lncRNA-disease associations, and provide the most possible lncRNA-disease pairs for experimental validation. Considering the limitations of traditional Random Walk wi...

متن کامل

BRWLDA: bi-random walks for predicting lncRNA-disease associations

Increasing efforts have been done to figure out the association between lncRNAs and complex diseases. Many computational models construct various lncRNA similarity networks, disease similarity networks, along with known lncRNA-disease associations to infer novel associations. However, most of them neglect the structural difference between lncRNAs network and diseases network, hierarchical relat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016